GetPageRank (SWIG) '''''''''''''''''' .. function:: GetPageRank(Graph, PRankH, C=0.85, Eps=1e-4, MaxIter=100) :noindex: Computes the PageRank score of every node in *Graph*. The scores are stored in *PRankH*. Parameters: - *Graph*: graph (input) A Snap.py graph or a network. - *PRankH*: :class:`TIntFltH`, a hash of int keys and float values (output) PageRank scores. Keys are node IDs, values are computed PageRank scores. - *C*: float (input) Damping factor. - *Eps*: float (input) Convergence difference. - *MaxIter*: int (input) Maximum number of iterations. Return value: - None The following example shows how to calculate PageRank scores for nodes in :class:`TNGraph`, :class:`TUNGraph`, and :class:`TNEANet`:: import snap Graph = snap.GenRndGnm(snap.PNGraph, 100, 1000) PRankH = snap.TIntFltH() snap.GetPageRank(Graph, PRankH) for item in PRankH: print(item, PRankH[item]) UGraph = snap.GenRndGnm(snap.PUNGraph, 100, 1000) PRankH = snap.TIntFltH() snap.GetPageRank(UGraph, PRankH) for item in PRankH: print(item, PRankH[item]) Network = snap.GenRndGnm(snap.PNEANet, 100, 1000) PRankH = snap.TIntFltH() snap.GetPageRank(Network, PRankH) for item in PRankH: print(item, PRankH[item])